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Abstract  
Background 
We participated in the BioCreAtIvE Task 2, which addressed the annotation of 
proteins into the Gene Ontology (GO) based on the text of a given document and the 
selection of evidence text for that annotation from the document. We approached the 
task utilizing several combinations of two distinct methods: one an unsupervised 
algorithm for expanding words associated with GO ids, and another treating 
annotation as categorization into the GO based on the lexical overlaps from terms in a 
protein’s document neighborhood with terms on or associated with GO nodes. 

Results 
The evaluation results indicate that the method for expanding words associated with 
GO ids is quite powerful; we were able to successfully select appropriate evidence 
text for a given annotation in 38% of Task 2.1 queries by building on this method.  
The categorization methodology achieved a precision of 16% for annotation within 
the correct extended family in Task 2.2, though we show through subsequent analysis 
that this can be improved with a different parameter setting.  Our architecture proved 
not to be very successful on the evidence text component of the task, in the 
configuration used to generate the submitted results. 

Conclusion 
The initial results show promise for both of the methods we explored, and we are 
planning to integrate the methods more closely to achieve better results overall. 

Background  
We participated in the BioCreAtIvE evaluation (Critical Assessment of Information 
Extraction in Biology).  We addressed Task 2, the problem of annotation of a protein 
with a node in the Gene Ontology (GO, http://www.geneontology.org) [1] 
based on the text of a given document, and the selection of evidence text for that 
annotation. We approached the task utilizing various combinations of two distinct 
methods: one an unsupervised algorithm for expanding words associated with GO ids; 
and another treating annotation as categorization of terms derived from the sentential 
neighborhoods of the given protein in the given document into nodes in the GO based 
on the lexical overlaps with terms on GO nodes and terms identified as related to 
those nodes. The system also incorporates Natural Language Processing (NLP) 
components such as a morphological normalizer, a named entity recognizer, and a 
statistical term frequency analyzer. The unsupervised method for expanding words 
associated with GO ids is based on a probability measure that captures word 
proximity from co-occurrence data [2]. The categorization methodology uses our 
novel Gene Ontology Categorizer (GOC) methodology [3] to select GO nodes as 
"cluster heads" for the terms in the input set based on the structure of the GO. 
 
BioCreAtIvE Task 2 had two subtasks for which we received evaluated results: 

Task 2.1 – Given a (protein, document, GO id) triple, return the evidence text 
from the document supporting the annotation of the protein with the GO id. 
 



Task 2.2 – Given a (protein, document) pair, return n annotations into the GO 
(GO ids) for the given protein based on the given document, along with 
supporting evidence text from the document for each annotation. 

Methods 
Pre-processing 
Swiss-Prot and TrEMBL IDs were provided as input identifiers for the protein, so we 
needed to establish a set of names by which that protein could be referenced in the 
text. We made use of both the gene name and protein names that are in Swiss-Prot 
itself, when available, and a collection of synonyms constructed by Procter & Gamble 
Company. The fallback case was to use the name filled in from the EBI TrEMBL 
human data.  A script was applied to the TrEMBL names that generated variants of 
strings containing mismatched punctuation and parentheticals such as “(precursor)” or 
“(fragment)” which were felt not to be likely to occur directly in the text.  The 
resulting database tables were used to construct a list which was dynamically loaded 
from the database into a GATE [4] gazetteer processing module (which in turn 
compiles it into a finite state recognizer). 
 
Additional pre-processing was performed on the document corpus. First, the original 
SGML documents were parsed to extract the Title, Abstract, and Body components, 
to normalize SGML character entities to corresponding ASCII characters (for 
instance, converting “&prime;” to an apostrophe), and to remove all formatting tags 
apart from the paragraph markers. Subsequently, we morphologically normalized the 
documents using a tool called BioMorpher.  BioMorpher is a morphological analysis 
tool built on the Morph tool originally developed at the University of Sheffield by 
Kevin Humphreys and Hamish Cunningham for general English, extended to include 
large exception lists for biological text as well as to handle some morphological 
patterns not handled by the original tool.  Finally, we performed frequency analysis 
on the resulting terms, and selected representative terms for each document using a 
TFIDF filter (term frequency inverse document frequency, [5]). 

Unsupervised Methodology for Expanding Words Associated with GO ids 
The (protein, document, GO id) triples provided for training purposes, as well as those 
given as queries for Task 2.1, were used to determine sets of words related to GO ids 
following a methodology developed for the Active Recommendation Project at Los 
Alamos [6]. After document pre-processing, we divided each document into 
paragraphs and calculated for each document a matrix of word occurrence in the 
paragraphs: R: P×W, where P is the set of all m paragraphs in a document, and W is 
the set of all n words. This is a Boolean matrix (ri,j ∈ {0, 1}) that specifies if a given 
word occurred at least once in a given paragraph.  
 
From the R matrices, we calculated a word in paragraph proximity matrix, WPP, for 
each document, using the co-occurrence probability measure below, as defined in [2]: 
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WPP denotes the association strength between pairs of words (wi, wj) , based on how 
often they co-occur in the paragraphs of a given document. A value of wpp (wi, wj) = 
0.3, means that words wi and wj co-occur in the same paragraphs 30% of the time that 
either one of them occurs. To avoid artificially high values of WPP, we computed this 
value only if the total number of paragraphs in which either of the words occurs (the 
denominator of the formula) is at least 3.  
 
We can think of WPP as an associative network of words. Indeed, the WPP matrix 
defines a fuzzy graph [7] where the vertices are words wi, and the edges are 
probability weights wpp (wi, wj). Such a graph can also be understood as an 
associative knowledge structure that represents how words co-occur in a given 
document, and therefore as an associative model of the knowledge stored in each 
document in terms of its constituent words [8]. Figure 1 depicts a sub-graph of the 
WPP for one of the BioCreAtIvE documents (JBC_1999/bc005868). 
 

[FIGURE 1 about here] 
 
Next we set out to identify words associated with GO ids.  Using the GO ids in the 
provided triples we retrieved the words from the GO node label.  Let us refer to this 
set of words as WGO (the red nodes in Figure 1, for GO id 0007266).  For each 
document, we then retrieved a set of words highly associated with the words in WGO 
in the relevant WPP network. Specifically, we returned the top 5 to 10 additional 
words with largest average value of WPP to all the words in WGO (the green nodes in 
Figure 1).  The additional words thus discovered were used to expand WGO. Let us 
refer to the expanded set of words as WGOProx; the additional words are not found in 
the respective GO node label, but co-occur highly in a given document with the words 
in the GO node label. This process is depicted in Figure 2. 
 

[FIGURE 2 about here] 
 
In Run 1 submitted for Task 2.1, which yielded a good result for this task (see below), 
for each (GOid, document) pair (note that we do not make use of the protein 
provided) ,we used its respective matrix R and used WGOProx to recommend 
paragraphs as evidence text for the GO id. This was done using a vector intersection 
operation (step 4 in Figure 2). The columns of R are vectors of words occurring in a 
paragraph. We choose as evidence text for the GO id the paragraphs associated with 
the columns of R that yield the largest intersection with WGOProx. That is, paragraphs 
containing the largest number of words also found in WGOProx  are selected. 

System Operation 
The architecture of the complete system is shown in Figure 3.  As mentioned 
previously, morphological normalization, TFIDF-based term weighting, and 
proximity-based GO id word expansion are performed during pre-processing for each 
document.  When executing a given query (for runs other than Task 2.1, run 1 as we 
will explain below), we wish to extract terms from the document neighborhood of the 
given protein in order to focus on terms that are most likely to be directly relevant to 
annotating the protein.  In the runs submitted for evaluation, when we could identify 
references to the given protein in the document based on matching one of the known 
names for the protein in our database, we would extract all terms in the same sentence 
as each protein reference.  These sets of terms together, with each term weighted by 



TFIDF to represent its significance, would form the input items for subsequent 
processing. 

 
[FIGURE 3 about here] 

 
After expanding words in GO labels, we employ the term categorization method to 
predict GO annotations.  This method is based on the GOC [3,9], which utilizes the 
structure of the GO to find the best nodes to “cover” or “categorize” a given set of 
other nodes.  In GOC’s original design, the set of input/query nodes was intended to 
be derived from the annotations of a set of gene products of interest.  For 
BioCreAtIvE Task 2, GOC was extended first to accept weighted query items; and 
additionally extended to take terms as query items to be mapped to the set of GO 
nodes in which they appear.  
 
A brief technical description and toy example of the base GOC’s operation, and a 
description of its extensions for the task to handle weighted text queries, are provided 
in Appendix A.  After identifying the set of node hits which lexically overlap with the 
input query, GOC traverses the structure of the GO, percolating hits upwards, and 
calculating scores for each GO node.  GOC then returns a rank-ordered list of GO 
nodes representing “cluster heads” (note that we are not using “cluster” here in the 
sense of traditional clustering, e.g. k-means), in the end providing an assessment of 
which nodes best cover the input items, as well as data on which of the input terms 
contributed to the selection of each cluster head.  
 
Input terms are mapped to GO nodes via one of three mechanisms:  

• Direct: The term occurs in the node label of GO node 
• Definitional: The term occurs in the definition text associated with GO node 
• Proximity: The term is one of the WGOProx terms related to a GO node through  

the proximity-based word expansion described above [2] 
 
Direct and indirect associations are counted as distinct “hits” on a node and can be 
weighted differently. GOC is run on the derived query, and its output is considered an 
annotation of the query, which can be directly compared to the correct answers 
provided by the organizers (see discussion below). The GOC output is then further 
used to select the evidence text for the GO assignment associated with each cluster 
head (up to the limit of n annotations). To address this, we again draw on proximity 
measurement – in this case, the proximity of terms contributing to an annotation to 
individual paragraphs in the document. The closest match using the vector 
intersection operation (step 4, Figure 2) is selected as the evidence. 

Results  
We submitted 3 runs for each of tasks 2.1 and 2.2 (as well as a run for task 2.3 which 
was not scored).  The runs consisted of the following configurations of the system: 
 Task 2.1 

Run 1:   A configuration bypassing GOC, utilizing only the GO label 
Word Expansion, based on proximity networks, followed by vector 
intersection of the columns of R and the expanded set of words 
associated with a GOid, WGOProx, to discover paragraphs (essentially, 
the architecture of Figure 2). 



Run 2:  A configuration using the full system architecture including 
GOC, in which GOC is constrained to search for cluster heads only 
below the annotation given in the input query.  Evidence selection 
consisted of a simple sentence selection algorithm, effectively an 
intersection of the terms in each sentence containing a relevant protein 
reference and the input terms (from the document neighborhood of the 
protein) reported by GOC to be used in the selection of the cluster 
head.   
Run 3:  Same configuration as above for annotation portion.  Evidence 
selection used vector intersection of the columns of R and the input 
terms (from the document neighborhood of the protein) reported by 
GOC to be used in the selection of the cluster head.  Thus, paragraphs 
were returned as evidence text. 

 Task 2.2 
Run 1:  A configuration using the full system architecture.  Evidence 
selection consisting of the simple sentence selection algorithm. 
Run 2:  A configuration using the full system architecture.  Evidence 
selection consisting of the paragraph selection algorithm. 
Run 3:  A configuration using the full system architecture, minus the 
sentence-based context term selection component, using instead a 
“fallback” scenario of selecting the top TFIDF-ranked terms in the 
document as the context terms.  Evidence selection consisting of the 
paragraph selection algorithm. 
 

Results were evaluated by professional annotators from the European Bioinformatics 
Institute (EBI) by considering the evidence text according to the two criteria – 
whether the evidence text included a reference to the correct protein, and whether the 
evidence text directly referenced the GO node returned as the annotation.  On each of 
these two dimensions, the text was evaluated as “high” (correct), “generally” 
(generally correct, perhaps referencing the correct family of proteins rather than the 
protein itself, or the parent of the target GO annotation rather than the target 
annotation itself), or “low” (incorrect).  Overall, the evidence text was judged as 
“perfect” if it scored “high” on both of the criteria, and as “generally” when the 
protein was correct but the GO reference was “generally”.  The GO annotations were 
not evaluated independently from the evidence text in the official evaluation results. 
 
The results for the two tasks are shown in Tables 1 and 2.  We were user 7, 
highlighted in blue.  On Task 2.1, run 1, we achieved a score of either perfect or 
generally good for 413 of the results; this corresponds to a good result for 38% of the 
1076 queries.  Focusing just on perfect results, our result was 263 (24%). In this 
configuration, we ignored the protein altogether and focused on the GO node-
paragraph relationship. Nonetheless, we received a score of “high” on the protein 
mention measurement for 638 of the 1050 (61%) answers we submitted. This result 
reflects a high coherence between GO nodes and given proteins in the given 
documents, at least at the level of paragraphs. 
 

[TABLE 1 about here] 
 



Our results for the other runs we submitted for Task 2.1 were less good, achieving a 
perfect or generally good score for 83/86 (runs 2/3, respectively) of the queries, or 
about 8%.  
 
Our Task 2.2 results were in general not good, as shown in Table 2 (user 7, 
highlighted in blue).  However, it was discovered after the initial evaluation results 
were returned that there had been a problem with the evaluation of our submissions, 
as well as the submissions of user 17.  We were allowed to select one run for re-
evaluation by the EBI annotators; we selected run 2.  Table 2 shows the results after 
re-evaluation; approximately 5% “perfect” and 2% “generally” correct.  The numbers 
in brackets indicate the original evaluation results for those runs.  It is clear that the 
re-evaluation resulted in significantly more positive results, so that we can assume 
that the reported numbers for the runs 1 and 3 are also lower than the actual 
(corrected) results would indicate.  We are also aware of a number of issues which 
contributed to our poor results, and which we have since addressed in part, and 
discuss below.  

Discussion  
There are several important general issues in the evaluation that impacted our 
performance. 
 
Unknown proteins: The strategy that we follow for identifying the context window 
of a protein (in runs other than Task 2.1, run 1) depends on recognizing references to 
the protein in the text. We utilize a database of known names associated with protein 
IDs to pick out sentences mentioning the protein given in a query. We chose this 
strategy as it was straightforward to implement, and because protein reference 
identification was being addressed in BioCreAtIvE Task 1. The training data for Task 
2 supported this strategy – a large majority (about 70%) of the training queries 
contained proteins that had names in our database.  However, we discovered that the 
test data contained many protein IDs that were not yet available in SwissProt.  Only 
58 of the 286 (20%) proteins referenced in Task 2 evaluation queries were named in 
our database; 29/138 (21%) for Task 2.1 and 19/138 (14%) for Task 2.2. For the 
queries, only 153/1076 (14%) of Task 2.1 queries and 44/435 (10%) of Task 2.2 
queries included proteins for which we had names. We were able to fall back to the 
names in the TrEMBL database, but these are of poor quality and usually there is only 
one name, not a full set of synonyms for a protein; often we did not find any 
occurrences of these names in the query document. This issue had a big impact on our 
ability to focus in on text within documents that was directly relevant to the protein of 
interest (see further discussion of this problem, below).  On the other hand, post-hoc 
analysis of our (corrected) evaluation results for Task 2.2, run 2 showed that 16 of the 
19 “perfect” and 8 of the 9 “generally” results actually were achieved for proteins not 
in our database.  This suggests two possible problems: the names that we do have in 
our database are inadequate for effective protein reference identification and/or the 
use of a single sentence as context for terms related to the protein of interest is to 
narrow.  We should therefore experiment with the size of left and right context 
windows to achieve better results. 
 
Assessing Annotation Accuracy: The methodology followed by the evaluators of 
Task 2.2 focused on the evidence text selection, measuring whether the selected 
evidence text for a given query mentioned both the protein of interest, and the 



function/process/component indicated by the target GO node. The prediction of the 
GO node itself was not evaluated independently of the evidence text. Our 
interpretation of the task was that there were two results, prediction of the GO node 
and selection of the evidence text. We considered the primary task of an annotator to 
be to correctly annotate a protein; in fact the GO and other biological knowledge 
repositories rarely reference anything more specific than a Pubmed ID as evidence for 
an annotation. Hence we considered the two results separately and focused our energy 
more on the GO node annotation component. While in some of the runs, our overall 
results were not strong, our overall performance is better when considering annotation 
distinctly from text selection. 
 
Since completion of the evaluation, we have refined, improved, and measured our 
annotation results in a number of ways. First, there is a free parameter s to GOC 
called the specificity, which represents the extent to which the user values results 
which are “low” in the GO hierarchy, or more specific, over “high”, or more abstract, 
results. Because GOC is itself a novel technique, at the time of the submission we had 
not yet refined our sense of the use of this parameter, and set it to be much higher than 
appropriate (s=7).  We shall see that this was an improper choice, with stronger 
results for moderate levels of specificity. 
 
Then, for each query we were instructed to provide a certain number n of annotations, 
and after the fact we were told what those correct annotations were. GOC returns a 
rank-ordered list usually longer then n, and so we cut this list off at n nodes, even if a 
correct answer might have occurred lower down in the list. Thus we end up with two 
sets of n nodes from the GO – our n annotation predictions and the n correct 
annotations. 
 
To calculate our annotation accuracy, we can check how many of our answers match 
the correct answer exactly, but this doesn't account for "near misses", where we might 
return a parent, child, or sibling of the correct answer, and still wish to count this as 
some kind of correct response.  Ultimately, this problem becomes that of measuring 
the amount of overlap between two sets of GO nodes, which is actually a difficult 
mathematical problem, which we [3,10] and others (e.g. [11]) are addressing. A 
detailed treatment of this subject is beyond the scope of this paper, but for our 
purposes, we measured "near misses" between two nodes p and q using the following 
categories: 

• Direct hit: p = q 
• Nuclear family: a direct hit, or p is a child, parent, or sibling of q. 
• Extended family: a nuclear family hit, or p is grandparent, grandchild, cousin 

(grandchild of a grandparent or grandparent of a grandchild), aunt/uncle (child 
of a grandparent), or a niece/nephew (grandchild of a parent), of q. 

• Ancestor: p is any ancestor of q. 
 
Precision and recall as a function of specificity s across these different categories are 
shown in Figure 4. Results are especially poor for direct hits and very high specificity. 
A high specificity (s = 7)  was used for all of the GOC-based runs submitted.  For 
Task 2.2, the submitted results were therefore not as good as they might have been, 
with 6% precision and 5.9% recall for direct hits, 10.8% precision and 10.5% recall 
within the correct nuclear family, and 16.6% precision and 16.2% recall within the 



correct extended family.  For moderate levels of specificity at the level of nuclear and 
extended families, our results approach 50% precision. 
 

[FIGURE 4 about here] 
 
Note that due to the list cutoff issue, recall is bounded above by precision. Thus 
Figure 5 shows a more detailed analysis for precision only, and furthermore breaks 
out the family groups by their individual constituents (e.g. parents and siblings). Note 
that results are shown on a log scale. 
 

[FIGURE 5 about here] 
 
Some of the results appear impressive, for example approaching 100% for all 
ancestors and low specificity. This is misleading, since simply the topmost GO nodes 
like "biological process" and "gene ontology" are identified. However, looking at 
moderately "tight" neighborhoods like parents and grandparents, in family groups like 
nuclear and extended, reveals a moderately successful approach to automated 
functional annotation into the GO.  
 
Discussion, GOC-based runs: 
Due to the “unknown proteins” problem described above, the “protein neighborhood” 
terms input to GOC were in most instances the top TFIDF-ranked terms for the 
document as a whole, rather than coming from a coherent textual neighborhood 
around the protein. This had several implications. First, GOC may have been 
“overseeded” – since the input terms were derived from across the document, they 
may have matched very dispersed nodes in the GO. This would make it difficult for 
the GOC algorithm to confidently select a covering node for the input terms. Second, 
evidence text selection on the basis of overlap with or proximity to terms from across 
the document is difficult; it is unlikely that any single sentence/paragraph matches 
more than a few of these terms. 
 
The overseeding may have worsened the impact of an additional difficulty. The 
number of terms from the GOC input set used to rank a GO node was very small – 
normally 1-3 terms – and only this subset of terms was passed on to the two evidence 
selection algorithms. The motivation underlying this approach was to enable the 
evidence text selection for a GO annotation to proceed on the basis of only those 
document terms relevant to that annotation. In practice, given the small and weakly 
coherent sets of terms that were generated, this created great difficulty for reliably 
selecting a contiguous chunk of text focused on that GO node. This would have 
impacted the quality of the evidence text selected, and hence our overall evaluation 
results.  The problem could likely have been ameliorated by incorporating the strategy 
from Task 2.1, Run 1, utilizing all available information about the selected GO node, 
rather than limiting ourselves to terms from the context window. 
 
Finally, we would like to explore the interaction between TFIDF weights and the 
importance of a term in the GO. Preliminary analysis suggests that there are very 
frequent terms in the GO with relatively high TFIDF scores in the corpus; this would 
unfairly value those terms in GOC and exacerbate the overseeding problem. Some 
adjustment of the weighting scheme to better take into consideration the 
terminological structure of the GO is perhaps warranted. 



 
Discussion, Proximity network-based Word Expansion and Evidence Text 
selection: 
While the proximity network-based word expansion proved to be a very useful 
technique, the evaluator comments indicated that they were often unhappy with 
paragraphs as the basic unit for evidence text. To address this, we envision several 
changes. We could apply the proximity measurements at the sentence level, rather 
than the word level; we could explore metrics for recognizing excessively long 
paragraphs and splitting them at positions of subtle topic change; or we could try to 
use more linguistic (structural) analysis to focus in on the core information expressed 
and narrow the text returned. 
 
There are some additional ways to build on our results. We could calculate a global 
word proximity matrix, rather than one matrix per document, which should strengthen 
our confidence in the relationships between words, as well as relating any given word 
to more words due to consideration of its occurrence across the document corpus. We 
could also incorporate semi-metric analysis of the word proximities [2] to find 
additional (indirectly) related words, even if they do not co-occur in the corpus.  

Conclusions  
There is still significant room for improvement on this task, evidencing the 
complexities of automatic annotation of GO ids to proteins based on a single 
document, with complexities arising both from the structure of the GO itself and the 
difficulties of annotating into a large and extremely hierarchical structure, and from 
the ambiguous nature of text.  However, the initial results show promise for both of 
the methods we explored, and further analysis has helped us to better understand the 
impact of the various parameters of the system. We are planning to integrate the two 
methods explored in this study more closely to achieve better results overall. 
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Appendix A: GOC and its Extensions 
A synoptic overview of GOC’s operation, and its extension for this task, is provided 
here (for full details about the base GOC, see [3]). GOC begins by casting the nodes 
of GO as a set P, which is equipped with a partial order (a reflexive, symmetric, 
anti-transitive binary relation ) as the union of all the is-a and has-part links, 
yielding a structure called a partially ordered set (or poset) 

2P≤⊆
).,( ≤= PP  Two nodes 

 are called comparable when there is a chain in the GO between p and q, so 
that either p is a kind of q, or p is a part of q (denoted 

Pqp ∈,
qp ≤ ), or vice versa (for 

pq ≤ ). Note that many paths (called chains) can connect two comparable nodes. 
 
Then, features of GO nodes are cast as a set of labels X, and for example can be the 
gene products annotated to GO nodes, or in our case are the terms making up the 
phrases of each GO node. An annotation function  then assigns to each 
feature (term)  the collection of GO nodes  with which they are 
associated. Altogether, we get a mathematical structure called a POSet Ontology 
(POSO) O = (P,X,F).  

PXF 2: →
Xx∈ PxF ⊆)(

 
Between all pairs of comparable nodes qp ≤  we define a pseudo-distance ),( qpδ  
to indicate how "high" q is above p. While many pseudo-distances are possible, we 
use the length of the minimum chain between them, denoted mδ ; the length of the 
maximal chain xδ ; the average of these 2/)( xmax δδδ += ; and the average of the 
lengths of all the chains between p and q denoted apδ . We also have normalized 

pseudo-distances δ  derived by dividing by the height of P, the size of the largest 
chain. 
 
A toy example of a POSO is shown in Figure 6, where we have P = { A, B, ..., K }, X 
= { a, b, ..., j }, and e.g. F(b) = { A, E, F }. The height is 4, and BA ≤  are comparable 



nodes connected by three chains BGABFA ≤≤≤≤ , , and BIHA ≤≤≤ , so that 
33.2),(,5.2),(,4),(,3),( ==== BABABABA apaxxm δδδδ , and e.g. 4/3),( =BAmδ . 

 
[FIGURE 6 about here] 

 
Given a pseudo-distance and a set of nodes of interest , we then want to 
develop a scoring function S

XY ⊆
Y(p) which returns the weighted rank of a node  

based on the requested nodes Y. We have an unnormalized score hich 
returns an "absolute" number, and a normalized score  which returns a 
"relative" number. We also allow the user to choose the relative value placed on 
coverage vs. specificity by introducing a parameter 

Pp∈
+→ RPSY :  w

]1,0[:ˆ →PSY

}3,2,1,0,1,{ …… −∈s , where low s 
emphasizes coverage, and high s emphasizes specificity. The scoring function can use 
either the unnormalized or normalized distance.  
 
The four scoring functions used in the original GOC are shown in [3]. Output for the 
example in Fig 4 is shown in Table 3 for query Y = { c, e, i }, specificity values s = -1, 

1, and 3, doubly-normalized score Ŝ , and pseudo-distance mδ . In addition to scoring 
each node, GOC identified "primary cluster heads", which are shown in bold; and 
"secondary cluster heads", which are cluster heads which are "above" a primary 
cluster head, which are labeled with *.  
 
For the BioCreAtIvE Task 2 the following changes were made. As mentioned above, 
label sets X were allowed to be terms as well as gene products. Queries took the form 
of lists of terms weighted as described above, which generated a so-called fuzzy bag 
of P denoted , that is, an unordered collection of possibly duplicated nodes 

 equipped with weights . For example, a query could be  
PQ ⊆

Pp∈ ]1,0[: →Qw
{ ( biosynthesis, 1.0 ), ( biosynthetic catalysis, 1.0 ), ( catalysis, 0.8 ),  

( biosynthetic catalysis, 0.8 ), ( protein lipidation, 0.2 ) } 
which would map into the appropriate bag of nodes based on lexical matches between 
the terms and the GO node. The original scoring functions described in (Joslyn et al. 
2004) are then modified as follows, letting r = 2s: 

Unnormalized Distance: ∑
≤∈ +

=
pqQq

rQ pq
pwpS

: 1),(
)()(

δ
 

Normalized Distance: ∑
≤∈

−=
pqQq

r
Q pqpwpS

:
)),(1)(()( δ  

And finally, normalized versions are derived as  and ||/)()(ˆ QpSpS QQ =

||/)()(ˆ QpSpS QQ = , where |Q| is the size of the query, taken as the cardinality of the 
bag Q. 
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Figures 
Figure 1  - Subnetwork of WPP with 34 words for document 
JBC_1999/bc005868 
The red nodes denote the words retrieved from the given GO annotation (0007266: 
“Rho”, “protein”, “signal”, “transduce”): WGO. The blue nodes denote the words that 
co-occur very frequently (wpp > 0.5) with at least one of the red nodes: the co-
occurrence neighborhood of the GO words. The green nodes denote the additional 
words discovered by our algorithm as described in the text. Only edges with wpp > 
0.3 are shown. 

Figure 2  - GO id Word Expansion via proximity measure 
(1) For each document, a Boolean matrix of word occurrence in  paragraphs (R) is 
created. (2) Co-occurrence proximity network WPP is computed. (3) Words in GO id 
label (WGO) are expanded (WGOProx) using WPP. (4) Intersection of vector of expanded 
GO node words (WGOProx)  with word vectors for each paragraph in the document 
(columns of R) : paragraph with largest intersection is returned.  



Figure 3  - LANL System Architecture for BioCreAtIvE Task 2 

Figure 4  - Precision vs. Recall for different values of Specificity, s 
Paired precision (P) and recall (R) results as a function of specificity broken out by 
inclusive "family groups" as mentioned in the text. Note that recall is bounded above 
by precision, due to the need to cut off the number of GOC cluster heads considered 
based on the number of requested results. 

Figure 5  - Precision for different values of Specificity, s 
Log of precision as a function of s, broken out by the distinct (non-cumulative) family 
relations. For example, the precision results for "nuclear family" in Fig. 4 is the sum 
of direct hits from Fig. 4 and parents, children, and siblings from here. 

Figure 6 - A toy example of a labeled poset  
GO nodes are modeled by nodes with capital letters, with gene labels annotated to 
them in lower case. Note that the structure is neither a tree nor a lattice, but 
technically, the Hasse diagram of a poset P. 

Tables 
Table 1  - Results across all users for BioCreAtIvE Task 2.1 
Evaluation results on the evidence text selected for Task 2.1. A “perfect” evaluation 
indicates that the evidence text refers to both the correct protein and the correct GO 
node.  A “generally” evaluation indicates that it refers to the correct protein and that 
the reference to a GO node is somewhat too general.  The LANL team is user 7, 
highlighted in aqua. 

Table 2  - Results across all users for BioCreAtIvE Task 2.2 
Evaluation results on the evidence text selected for Task 2.2.  See legend for Table 1.  
In this task, evaluation of the GO node reference was done with respect to the 
predicted GO annotation provided by the system. 

Table 3  - Original GOC output in the toy example 
GOC output for values of specificity }3,1,1{−∈s . Log of precision as a function of s, 
broken out by the distinct (non-cumulative) family relations. For example, nuclear 
family in Fig. 4 is here the sum of direct hits from Fig. 4 and parents, children, and 
siblings from here. 
 
 
 
 



Table 1: 
 
User, 
Run 

# 
results “perfect” “generally” 

4, 1 1048 268 (25.57%) 74 (7.06%) 

5, 1 1053 166 (15.76%) 77 (7.31%) 

5, 2 1050 166 (15.81%) 90 (8.57%) 

5, 3 1050 154 (14.67%) 86 (8.19%) 

7, 1 1050 263 (25.05%) 150 (14.29%) 

7, 2 1856 43 (2.32%) 40 (2.16%) 

7, 3 1698 59 (3.47%) 27 (1.59%) 

9, 1 251 125 (49.80%) 13 (5.18%) 

9, 2 70 33 (47.14%) 5 (7.14%) 

9, 3 89 41 (46.07%) 7 (7.87%) 

10, 1 45 36 (80.00%) 3 (6.67%) 

10, 2 59 45 (76.27%) 2 (3.39%) 

10, 3 64 50 (78.12%) 4 (6.25%) 

14, 1 1050 303 (28.86%) 69 (6.57%) 

15, 1 524 59 (11.26%) 28 (5.34%) 

15, 2 998 125 (12.53%) 69 (6.91%) 

17, 1 412 0 (0.00%) 1 (0.24%) 

17, 2 458 1 (0.22%) 0 (0.00%) 

20, 1 1048 300 (28.63%) 57 (5.44%) 

20, 2 1050 280 (26.72%) 60 (5.73%) 

20, 3 1050 239 (22.76%) 59 (5.62%) 



Table 2: 
 

 
User, 
Run 

# 
results 

“perfect” “generally” 

4, 1 661 78 (11.80%)  49 (7.41%) 

7, 1 153 1 (0.65%) 1 (0.65%) 

7, 2 384 19 (4.95%)  
[1] 

9 (2.34%)  
[1] 

7, 3 263 2 (0.76%) 10 (3.80%) 

9, 1 28 9 (32.14%) 3 (10.71%) 

9, 2 41 14 (34.15%) 1 (2.44%) 

9, 3 41 14 (34.15%) 1 (2.44%) 

10, 1 120 35 (29.17%) 8 (6.67%) 

10, 2 86 24 (27.91%) 6 (6.98%) 

10, 3 116 37 (31.90%) 11 (9.48%) 

15, 1 502 3 (0.60%) 8 (1.59%) 

15, 2 485 16 (3.30%) 26 (5.36%) 

17, 1 247 52 (21.05%) 
[1] 

23 (9.31%)  
[0] 

17, 2 55 1 (1.82%) 0 (0.00%) 

17, 3 99 1 (1.01%) 1 (1.01%) 

20, 1 673 20 (2.97%) 30 (4.46%) 

20, 2 672 38 (5.65%) 26 (3.87%) 

20, 3 673 58 (8.62%) 27 (4.01%) 



Table 3: 
 
 s = -1 s = 1 s = 3 
Rank  )(ˆ pSY  p )(ˆ pSY  p )(ˆ pSY  p 

1  0.7672  C   0.5467  H   0.3893  H 
2  0.6798  1*   0.3867  C*   0.3333  A;J 
3  0.6315  H  0.3333  A;I;J     
4  0.5563  I      0.0617  C* 
5  0.5164  B      0.0615  I 
6  0.3333  A;J  0.2400  B*   0.0559  F;G;K 
7     0.2267  1*     
8  0.2981  F;G;K   0.2133  F;G;K    
9        0.0112  B 

10         0.0060  1 
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